Pore surface fractal dimension of sol-gel derived nanoporous SiO2-ZrO2 membrane

نویسنده

  • maryam shojaie bahaabad Department of chemical and materialas engineering, shahrood university of technology, shahrood, iran
چکیده مقاله:

In this work, SiO2 –ZrO2 mixed oxides was prepared by the polymeric sol–gel route. The characterization of pore structure, which determines the permeation process of membrane, is of great importance. So far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of pore surface. Pore surface roughness change in SiO2-ZrO2 unsupported membranes induced by chemical composition and heating process has been investigated by the analysis of surface fractal dimension. Fractal features are analyzed from N2 adsorption–desorption measurements. It was found that a decrease in the surface fractal dimension occurs while zirconia content increases at the unsupported membranes with different molar ratio of zirconia to silica heating at 500 ºC. The surface fractal dimension of membrane with 30 mol% silica content slightly increases while heating from 200 to 500 ºC due to shrinkage and increase of mass fractal dimension of silica clusters.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pore surface fractal dimension of sol-gel derived nanoporous sio2-zro2 membrane

in this work, sio2 –zro2 mixed oxides was prepared by the polymeric sol–gel route. the characterization of pore structure, which determines the permeation process of membrane, is of great importance. so far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of por...

متن کامل

Effect of surface roughness on coating SiO2-P2O5-CaO-ZrO2 upon Zirconium by Sol-Gel Method

Zirconium and its alloys have many applications in orthopedic medicine and compared to stainless steel, titanium and other metals used in the manufacture of implants has higher strength and corrosion resistance. Research shows that the method of preparation and surface modification before coating process has a significant impact on improving the metal implants among which include the sandblasti...

متن کامل

Mechanical properties of sol–gel derived SiO2 nanotubes

The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol-gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoinde...

متن کامل

Effect of Concentration and Thermal Treatment on the Properties of Sol-Gel Derived CuO/SiO2 Nanostructure

Various concentrations of copper are embedded into silica matrix to xerogel form using copper source - Cu(NO3)2∙3H2O. The xerogel samples are prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method  and with determination of new molar ratio of components H2O/TEOS to be 6.2. In this investigation, the necess...

متن کامل

Characterization of Sol-Gel Derived CuO@SiO2 Nano Catalysts towards Gas Phase Reactions

One distinct concentration of copper ions was embedded into the silica matrix to xerogel form using copper source Cu(NO3)2∙3H2O. The xerogel samples were prepared with using hydrolysis and condensation reactions of TetraEthyl Ortho-Silicate (TEOS) by the sol-gel method. In this investigation, new molar ratio of H2</su...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 4

صفحات  77- 86

تاریخ انتشار 2016-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023